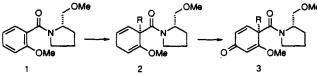
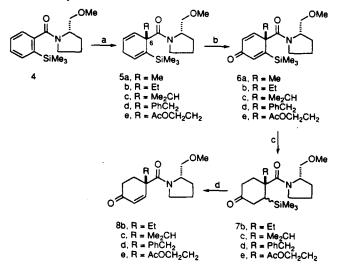


PII: S0040-4039(97)01215-X


Asymmetric Synthesis of 4,4-Disubstituted-2-cyclohexen-1-ones from a Chiral 2-(Trimethylsilyl)benzamide

Arthur G. Schultz* and Liping Pettus

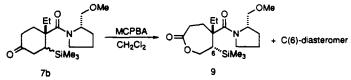
Department of Chemistry Rensselaer Polytechnic Institute Troy, NY 12180-3590


Abstract: Birch reduction-alkylation of the chiral 2-(trimethylsilyl)benzamide 4 provides 1,4-cyclohexadienes 5b-5e with diastereomer ratios of >100:1. The conversions of 5b-5e to the 4,4-disubstituted-2-cyclohexen-1-ones 8b-8e are described. © 1997 Elsevier Science Ltd.

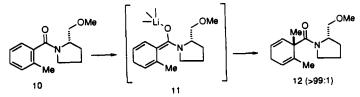
Chiral 4,4-disubstituted-2-cyclohexen-1-ones play an exceedingly important role in asymmetric organic synthesis.¹ Applications range from their use in conjugate addition reactions, Diels-Alder and dipolar cycloadditions to photochemical 2+2 cycloadditions, type A rearrangements and electron transfer processes. The Birch reduction-alkylation of chiral 2-(methoxy)benzamide 1 has provided a practical method for asymmetric synthesis of 3-methoxy-2,5-cyclohexadien-1-ones 3 by way of bis allylic oxidation of the intermediate 1,4-cyclohexadiene 2.² Although the conversion of 2 or 3 to chiral 4,4-disubstituted-2-cyclohexen-1-ones might be possible, it seemed more economical to develop a synthesis of cyclohexenones from the 2-(trimethylsilyl)benzamide 4. Herein, we report several examples of the highly diastereoselective Birch reduction-alkylation of 4 and attendant chemistry to prepare the 4,4-disubstituted-2-cyclohexen-1-ones 8b-8e.

The Birch reduction of 4^3 was carried out at -78 °C with potassium (> 2 equiv) in ammonia and THF solution in the presence of t-BuOH (1 equiv). After 10 min, lithium bromide (1.5 equiv) was added to the dark blue solution; after an additional 10 min, piperylene was added until the blue coloration disappeared. The alkylation reagent was added, stirring at -78 °C was continued for 2 h, and then solid NH₄Cl was added to the reaction mixture. The 1,4-cyclohexadienes 5a-5e were immediately converted to the 2,5-cyclohexadiene1-ones 6a-6e on oxidation with catalytic PDC and t-BuOOH in benzene in the presence of Celite.

Product yields and diastereometric composition for the two-step conversion $4 \rightarrow 5 \rightarrow 6$ are shown in Table I. Diastereometric compositions of **6a-6e** were determined by direct GC comparison to 1:1 mixtures of diastereometric prepared by reductive alkylation of methyl 2-(trimethylsilyl)benzoate, saponification, coupling of the resulting carboxylic acids to (S)-prolinol (methyl ether) and oxidation to the dienones.⁴ Although MeI gave only moderate stereoselectivity in the enolate alkylation step, all more sterically demanding alkyl halides afforded outstanding stereocontrol. Hydrogenation of **6b-6e** with 10% Pd/C in EtOAc gave cyclohexanones **7b-7e** as mixtures of diastereomers at C(3). A modification⁵ of the procedure for oxidative elimination of β -trimethylsilyl ketones described by Fleming and co-workers⁶ enabled the conversion of **7b-7e** to the 4,4-disubstituted-2-cyclohexen-1-ones **8b-8e**, with yields as indicated in Table I.



Reaction conditions: (a) K, NH₃, t-BuOH, THF, -78 °C; LiBr; piperylene; RX, -78 °C; (b) PDC (cat), Celite, t-BuOOH, PhH; (c) H₂ (63 psi), 10% Pd/C, EtOAc; (d) CuCl₂, DMF, 60 °C.


Table I. Conversions of 2-(Trimethylsilyl)benzamide 4 to cyclohexadienones 6a-6e and cyclohexenones 8b-8e

entry	RX	Cyclohexadie yield (%) ^a	enones 6 ratio ^b	Cyclohexenones 8 yield (%) ^c
1	MeI	92	3.2:1	
2	EtI	87	>100:1	87
3	Me ₂ CHI	86	>100:1	88
4	PhCH ₂ Br	80	>100:1	82
5	AcOCH ₂ CH ₂ Br	85	>100:1	83

^aIsolated yields for the reaction sequence $4 \rightarrow 5 \rightarrow 6$ after flash chromatography on silica gel; diastereomers were not separated. ^bDiastereomer ratio determined by GC analysis; see ref. 4. ^cIsolated yields for the reaction sequence $6 \rightarrow 7 \rightarrow 8$ after flash chromatography on silica gel. The stereochemical sense of enolate alkylation was determined for 7b by utilization of the silicondirected Baeyer-Villiger oxidation⁷ to give caprolactone 9 and its C(6) diastereomer. A single crystal X-ray structure determination for 9 provided the molecular structure shown in Figure 1.⁸ The absolute configuration at C(6) for the series 5a-5e was assigned by consideration of the molecular structure of 9 and trends observed for the ¹H NMR chemical shifts and GC retention times⁴ for 6a-6e and their minor diastereomers.

The sense of stereoselectivity for alkylation of the enolate generated from the 2-(methoxy)benzamide 1 has been explained by a mechanism that involves internal chelation control.⁹ In contrast to 1, the 2-(methyl)benzamide 10, in which chelation control cannot operate, gives opposite stereoselectivity; alkylation occurs from the least hindered face of the intermediate enolate 11, away from the methoxymethyl group on the chiral auxiliary, to give 12.⁹

It is interesting that the bulky trimethylsilyl substituent in 4 affords the same sense of stereoselection for enolate alkylation as that for primary 2-alkyl substituents in 10 and related benzamides.¹⁰ Additional characterization of the enolate generated from Birch reduction of 4 and synthetic applications of the 1trimethylsilyl-1,4-cyclohexadienes 5 will be reported in the near future.

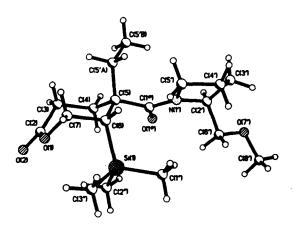


Figure 1. Molecular structure of 9

Acknowledgment. This work was supported by the National Institutes of Health (GM 26568). We thank Dr. Fook S. Tham for the X-ray structure determination.

References and Notes

- 1. For example, see: Devine, P. N.; Meyers, A. I. J. Am. Chem. Soc. 1994, 116, 2633-2634.
- For examples of the conversion of 1 and substituted analogues 1 to 2,5-cyclohexadien-1-ones, see:

 (a) Schultz, A. G.; Malachowski, W. P.; Pan, Y. J. Org. Chem. 1997, 62, 1223-1229.
 (b) Schultz, A. G.; Taveras, A. G.; Taylor, R. E.; Tham, F. S.; Kullnig, R. K. J. Am. Chem. Soc. 1992, 114, 8725-8727.
 (c) Schultz, A. G.; Taveras, A. G.; Harrington, R. E. Tetrahedron Lett. 1988, 29, 3907-3910.
 (d) Schultz, A. G.; Plummer, M.; Taveras, A. G.; Kullnig, R. K. J. Am. Chem. Soc. 1988, 110, 5547-5555.
- 3. The 2-(trimethylsilyl)benzamide 4 was prepared from 2-(trimethylsilyl)benzoic acid and (S)-prolinol in 88% yield. For the preparation of 2-(trimethylsilyl)benzoic acid, see: Schultz, A. G.; Antoulinakis, E. G. J. Org. Chem. 1996, 61, 4555-4559.
- 4. GC analyses were performed on a Hewlett Packard 5710A gas chromatograph with a flame ionization detector (300 °C) fitted with a 6 ft x 1/8" stainless steel column filled with 3% OV-17 on chromosorb-whp 80/100 mesh (gas pressure: N₂ 40 psi; air 24 psi; H₂ 40 psi). Peak areas were measured with a HP-3380A integrator. Analysis information: 6a (column temperature 200 to 250 °C, 1 °C/min) 17.3 min, minor diastereomer 20.3 min; 6b (200 to 250 °C, 1 °C/min) 16.7 min, minor diastereomer 19.9 min; 6c (180 to 240 °C, 1 °C/min) 22.8 min, minor diastereomer 26.0 min; 6d (200 to 250 °C, 1 °C/min) 17.0 min, minor diastereomer 20.3 min; 6e (200 to 260 °C, 1 °C/min) 28.8 min, minor diastereomer 31.2 min. New compounds were characterized by ¹H and ¹³C NMR, IR, low resolution MS and combustion analyses.
- 5. Asaoka, M.; Shima, K.; Takei, H. J. Chem. Soc., Chem. Commun. 1988, 430-431.
- (a) Fleming, I.; Goldhill, J. J. Chem. Soc., Chem. Commun. 1978, 176-177.
 (b) Ager, D. J.; Fleming, I. J. Chem. Soc., Chem. Commun. 1978, 177-178.
 (c) Fleming, I.; Percival, A. J. Chem. Soc., Chem. Commun. 1978, 178-180.
 (d) Fleming, I.; Perry, D. A. Tetrahedron 1981, 38, 4027-4034.
- Commun. 1978, 178-180. (d) Fleming, I.; Perry, D. A. Tetrahedron 1981, 38, 4027-4034. 7. Hudrlik, P. F.; Hudrlik, A. M.; Nagendrappa, G.; Yimenu, T.; Zellers, E. T.; Chin, E. J. Am. Chem. Soc. 1980, 102, 6894-6896.
- Crystals of 9 (mp 168-170 °C) were obtained from a solution of 9 in EtOAc/hexane under diffusion control (isothermal distillation occurred at room temperature); [α]²³D -82.0 ° (c 0.5, CHCl₃).
- (a) Schultz, A. G.; Macielag, M.; Sundararaman, P.; Taveras, A. G.; Welch, M. J. Am. Chem. Soc. 1988, 110, 7828-7841.
 (b) Schultz, A. G. Chinese Chem. Soc. (Taiwan) 1994, 41, 487-495.
- 10. Schultz, A. G.; Green, N. J. J. Am. Chem. Soc. 1991, 113, 4931-4936.

(Received in USA 18 April 1997; revised 11 June 1997; accepted 12 June 1997)