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Abs~act: Birch reduction-alkylation of the chiral 2-(trimethylsilyl)benzamide 4 provides 1,4-cyclohexadienes 5b-$e 
with diaslcmomcr ratios of > 100:1. The conversions of 5b-5e to the 4,4-disubstituted-2-cyciohexen-1-ones 8b-Be are 
described. © 1997 Elsevier Science Ltd. 

Chiral 4,4-disubstituted-2-cyclohexen- 1-ones play an exceedingly important role in asymmetric organic 

synthesis. 1 Applications range from their use in conjugate addition reactions, Diels-Alder and dipolar 

cycloadditions to photochemical 2+2 cycloadditions, type A rearrangements and electron transfer processes. 

The Birch reduction-alkylation of chiral 2-(methoxy)benzamide 1 has provided a practical method for 

asymmetric synthesis of  3-methoxy-2,5-cyclohexadien- 1-ones 3 by way of bis allylic oxidation of the 

intermediate 1,4-cyclohexadiene 2. 2 Although the conversion of 2 or 3 to chiral 4,4-disubstituted-2- 

cyclohexen-1-ones might be possible, it seemed more economical to develop a synthesis of cyclohexenones 

from the 2-(trimethylsilyl)benzamide 4. Herein, we report several examples of the highly diastereoselective 

Birch reduction-alkylation of 4 and attendant chemistry to prepare the 4,4-disubstituted-2-cyclohexen-1- 

ones 8b-8e. 
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The Birch reduction of 4 3 was carried out at -78 °C with potassium (> 2 equiv) in ammonia and THF 

solution in the presence of  t-BuOH (1 equiv). After 10 rain, lithium bromide (1.5 equiv) was added to the 

dark blue solution; after an additional 10 rain, piperylene was added until the blue coloration disappeared. 

The alkylation reagent was added, stirring at -78 °C was continued for 2 h, and then solid NH4C1 was added 

to the reaction mixture. The 1,4-cyclohexadienes 5a-Se were immediately converted to the 2,5-cyclohexa- 

dien-l-ones 6a- te  on oxidation with catalytic PDC andl-BuOOH in benzene in the presence of Celite. 

Product yields and diastereomeric composition for the two-step conversion 4 ~ 5 ~ 6 are shown 

in Table I. Diastereomeric compositions of 6a-6e were determined by direct GC comparison to 1:1 

mixtures of  diastereomers prepared by reductive alkylation of  methyl 2-(trimethylsilyl)benzoate, 

saponification, coupling of  the resulting carboxylic acids to (~.)-prolinol (methyl ether) and oxidation to the 

dienones. 4 Although MeI gave only moderate stereoselectivity in the enolate alkylation step, all more 

sterically demanding alkyl halides afforded outstanding stereocontrol. 
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Hydrogenation of 6b-6e with 10% Pd/C in EtOAc gave cyclohcxanones 7b-7e as mixtures of 

diastcreomers at C(3). A modification 5 of the procedure for oxidative elimination of [~-trimethylsilyl kctoncs 

described by Fleming and co-workers 6 enabled the conversion of 7b-7e to the 4,4-disubstituted-2- 

cyclohcxen-l-oncs 8b-Be, with yields as indicated in Table I. 
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4 5a, R = Me 
b . R = E t  
c. R = Me2CH 
cl. R = PhCH 2 
e. R = AcOCH2CH 2 
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8b. R = Et 
c, R = Mo2CH 
cl. R = PhCH 2 
e. R = AcOCH2CH 2 
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6a, R = Me 
b . R = E t  
c. R = Me2CH 
O, R = PhCH= 
e. R = AcOCH2CH z 
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7b, R = Et 
c. R = Me2CH 
O. R = PhCH 2 
e, R = AcOCH2CH;z 

Reaction conditions: (a) K, NI-I 3, I-BuOH, THF, -78 °C; LiBr; piperylene; RX, -78 °C; 
(b) PDC (cat), Celite, I-BuOOH, Phil; (c) H2 (63 psi), 10% Pd/C, EtOAc; (d) CuC12, 
DMF, 60 °C. 

Table I. Conversions of2-(Trimethylsilyl)benzamide 4 to cyclohexadienones 6a-6e and cyclohexenones 
8b.Se 

Cyclohexadienones 6 Cyclohexenones 8 
entry RX yield (%)a ratio b yield (%)c 

1 MeI  92  3.2:1 --- 

2 EtI 87 >100:1 87 

3 Me2CHI 86 >100:1 88 

4 PhCH2Br 80 >100:1 82 

5 AcOCH2CH2Br 85 >100:1 83 

alsolated yields for the reaction sequence 4 --, 5 -~ 6 after flash chromatography on silica gel; 
diastereomers were not separated, bDiastereomer ratio determined by GC analysis; see ref. 4. Clsolatcd 
yields for the reaction sequence 6 -~ 7 -~ 8 after flash chromatography on silica gel. 
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The stereochemical sense of enolate alkylation was determined for 7b by utilization of the silicon- 

directed Baeyer-Villiger oxidation 7 to give caprolactone 9 and its C(6) diastereomer. A single crystal 

X-ray structure determination for 9 provided the molecular structure shown in Figure 1.8 The absolute 

configuration at C(6) for the series Sa-Se was assigned by consideration of the molecular structure of 9 

and trends observed for the 1H NMR chemical shifts and GC retention times 4 for 6a-6e and their minor 

diastereomers. 
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The s¢ns¢ of stere.osclectivity for alkylation of the enolate generamd from the 2-(methoxy)benzamide 1 

has been explained by a mechanism that involves internal chelation control. 9 In contrast to 1, the 2- 

(methyl)benzamide 10, in which chelation control cannot op¢rate, gives opposite stereoselectivity; 

alkylation occurs from the least hindered face of the intermediate enolate 11, away from the methoxymethyl 

group on the chiral auxiliary, to give 12. 9 
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12 (>99:1) 
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It is interesting that the bulky trimethylsilyl substituent in 4 affords the same sense of stereoselection 

for enolate alkylation as that for primary 2-alkyl substituents in 10 and related benzamides. 10 Additional 

characterization of the enolate generated from Birch reduction of 4 and synthetic applications of the 1- 

trimethylsilyl-l,4-cyclohexadienes $ will be reported in the near future. 

Figure I. Molecular structure of 9 
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