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Asymmetric Synthesis of 4,4-Disubstituted-2-cyclohexen-1-ones
from a Chiral 2-(Trimethylsilyl)benzamide
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Abstract: Birch reduction-alkylation of the chiral 2-(trimethylsilyl)benzamide 4 provides 1,4-cyclohexadienes Sb-Se
with diastereomer ratios of >100:1. The conversions of 5b-Se to the 4,4-disubstituted-2-cyclohexen-1-ones 8b-8e are
described. © 1997 Elsevier Science Ltd.

Chiral 4,4-disubstituted-2-cyclohexen-1-ones play an exceedingly important role in asymmetric organic
synthesis.! Applications range from their use in conjugate addition reactions, Diels-Alder and dipolar
cycloadditions to photochemical 2+2 cycloadditions, type A rearrangements and electron transfer processes.
The Birch reduction-alkylation of chiral 2-(methoxy)benzamide 1 has provided a practical method for
asymmetric synthesis of 3-methoxy-2,5-cyclohexadien-1-ones 3 by way of bis allylic oxidation of the
intermediate 1,4-cyclohexadiene 2.2 Although the conversion of 2 or 3 to chiral 4,4-disubstituted-2-
cyclohexen-1-ones might be possible, it seemed more economical to develop a synthesis of cyclohexenones
from the 2-(trimethylsilyl)benzamide 4. Herein, we report several examples of the highly diastereoselective
Birch reduction-alkylation of 4 and attendant chemistry to prepare the 4,4-disubstituted-2-cyclohexen-1-
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The Birch reduction of 4 3 was carried out at -78 °C with potassium (> 2 equiv) in ammonia and THF
solution in the presence of {-BuOH (1 equiv). After 10 min, lithium bromide (1.5 equiv) was added to the
dark blue solution; after an additional 10 min, piperylene was added until the blue coloration disappeared.
The alkylation reagent was added, stirring at -78 °C was continued for 2 h, and then solid NH4Cl was added
to the reaction mixture. The 1,4-cyclohexadienes 5a-5e were immediately converted to the 2,5-cyclohexa-
dien-1-ones 6a-6e on oxidation with catalytic PDC and {-BuOOH in benzene in the presence of Celite.

Product yields and diastereomeric composition for the two-step conversion 4 — 5 — 6 are shown
in Table I. Diastereomeric compositions of 6a-6e were determined by direct GC comparison to 1:1
mixtures of diastereomers prepared by reductive alkylation of methyl 2-(trimethylsilyl)benzoate,
saponification, coupling of the resulting carboxylic acids to (8)-prolinol (methyl ether) and oxidation to the
dienones.4 Although Mel gave only moderate stereoselectivity in the enolate alkylation step, all more
sterically demanding alkyl halides afforded outstanding stereocontrol.
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Hydrogenation of 6b-6e with 10% Pd/C in EtOAc gave cyclohexanones 7b-7e as mixtures of
diastereomers at C(3). A modification’ of the procedure for oxidative elimination of B-trimethylsilyl ketones
described by Fleming and co-workersS enabled the conversion of 7b-7e to the 4,4-disubstituted-2-
cyclohexen-1-ones 8b-8e, with yields as indicated in Table 1.
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Reaction conditions: (a) K, NH3, 1-BuOH, THF, -78 °C; LiBr; piperylene; RX, -78 °C;
I(;)gdl;DC (gat), Celite, 1-BuOOH, PhH; (c) Ha (63 psi), 10% Pd/C, EtOAc; (d) CuCla,
, 60 °C.

Table I. Conversions of 2-(Trimethylsilyl)benzamide 4 to cyclohexadienones 6a-6e and cyclohexenones
8b-8e

Cyclohexadienones 6 Cyclohexenones 8

entry RX yield (%)@  ratiob yield (%)¢
1 Mel 92 3.2:1 ---
2 Ed 87 >100:1 87
3 Me,CHI 86 >100:1 88
4 PhCH2Br 80 >100:1 82
5 AcOCH,;CH5Br 85 >100:1 83

3]solated yields for the reaction sequence 4 — 5 — 6 after flash chromatography on silica gel;
diastereomers were not separated. PDiastereomer ratio determined by GC analysis; see ref. 4. CIsolated
yields for the reaction sequence 6 — 7 — 8 after flash chromatography on silica gel.
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The stereochemical sense of enolate alkylation was determined for 7b by utilization of the silicon-
directed Baeyer-Villiger oxidation” to give caprolactone 9 and its C(6) diastereomer. A single crystal
X-ray structure determination for 9 provided the molecular structure shown in Figure 1.8 The absolute
configuration at C(6) for the series 5a-5e was assigned by consideration of the molecular structure of 9
and trends observed for the 1H NMR chemical shifts and GC retention times* for 6a-6e and their minor

diastereomers.
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The sense of stereoselectivity for alkylation of the enolate generated from the 2-(methoxy)benzamide 1
has been explained by a mechanism that involves internal chelation control.® In contrast to 1, the 2-
(methyl)benzamide 10, in which chelation control cannot operate, gives opposite stereoselectivity,
alkylation occurs from the least hindered face of the intermediate enolate 11, away from the methoxymethy!
group on the chiral auxiliary, to give 129
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It is interesting that the bulky trimethylsilyl substituent in 4 affords the same sense of stereoselection
for enolate alkylation as that for primary 2-alkyl substituents in 10 and related benzamides.!0 Additional
characterization of the enolate generated from Birch reduction of 4 and synthetic applications of the 1-
trimethylsilyl-1,4-cyclohexadienes § will be reported in the near future.

Figure 1. Molecular structure of 9
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